ЕКОЛОГІЧНИЙ СТАН АГРОБІОРЕЗНОМАНІТТЯ ТЕРНОПІЛЬСЬКОГО РЕГІОНУ

В. М. Чайка, доктор сільськогосподарських наук;
Т. П. Черліка
Національний університет біоресурсів і природокористування України

Висвітлено проблему збереження рівня агробіорізноманіття на прикладі Тернопільського регіону, забезпечення екологічної стійкості агроландашафтів в умовах сучасного ресурсокористування, порушення стабільності агроекосистем через зміну кількість узагальненої видового різноманіття за індексом MSA, коефіцієнтом екологічної стійкості та коефіцієнтом антропогенного навантаження на агроландашафти територій, що підлягають дослідженню згідно з існуючою методикою бальних оцінювань під впливом сукупності ої антропогенних факторів.

Ключові слова: екологічна стійкість, агроландашафти, агробіорізноманіття, узагальнене видове багатство (різноманіття), біорізноманіття агроландашафтів, антропогенний вплив, антропогенне навантаження.

За прогнозами очікується, що у 2050 р. матиме місце явище поширення видів, за рахунок чого біорізноманіття набуде значних змін. Так, в Українській академії аграрних наук розроблено Концепцію сталого розвитку агроекосистем в Україні на період до 2025 р., яка схвалена у Міністерстві аграрної політики України. Припинення втрат біо- та ландшафтного різноманіття є однією з цілей національної екологічної політики України [1]. Як ж реальні вигоди або еколого-економічне значення біорізноманіття. Насамперед – це біологічна продуктивність, адаптація, «здоров’я» агроекосистеми, економічні вигоди [4].

![Diagram](attachment:image.png)

Рис. 1. Економічні вигоди від збільшення біорізноманіття.

Загроза суттєвого скорочення біорізноманіття агроландашафтів (агробіорізноманіття) в результаті антропогенічної діяльності змусила визнати його як глобальний об’єкт охорони. Україна, займаючи менше 6% площі Європи, має не менше 35% її видового біорізноманіття і випереджає майже всі європейські країни за цим показником. Крім цього, Україну можливо розглядати як одну з країн, що має резерви для відновлення біорізноманіття усієї Європи [4].

Об’єктом досліджень є рівень біорізноманіття агроландашафтів. Мета досліджень – удосконалення теоретичних підходів до оцінки екологічної стійкості агроландашафтів в умовах навколишнього природного середовища на прикладі Тернопільської області. В ході досліджень використовували системний метод аналізу за допомогою баз даних показників коефіцієнта екологічної стійкості агроландашафтів Тернопільської області, індексу видового біорізноманіття, його передбачені втрат у природному середовищі і ймовірного збереження відповідно до певних умов, дотримання раціональності підходів.

Збереження біорізноманіття є обов’язковою умовою, зокрема для забезпечення природної стійкості (стабільності якісного складу, стану) агроландашафтів. Відповідно збережен-
ня агробіорізноманіття – це збереження біорізноманіття агроландшафтів. Сільськогосподарська освоєність території області надзвичайно висока і становить 68%, а звідси без належних заходів щодо охорони ґрунтів, відтворення земель як основного виробничого потенціалу – прогресує деградація земель, що створює загрозу екологічній безпеці області. Для оптимізації функціональної структури сучасних агроландшафтів та зниження антропогенного тиску на навколишнє середовище проводиться оцінка екологічного балансу у співвідношенні основних угід, визначається екологічна стабільність території та рівень антропогенного тиску на земельні ресурси. Оцінку екологічного стану агроландшафтів пропонується проводити за ступенем порушення екологічної рівноваги у співвідношенні рідлі (P) до сумарної площі екологостабілізуючи угідь (ЕСУ) згідно з модифікованою шкалово (табл.1).

1. Щшка для оцінки екологічного стану агроландшафтів за співвідношенням угідь (згідно з методикою Н. А. Макаренко)

<table>
<thead>
<tr>
<th>Рідля</th>
<th>ЕСУ(екологостабілізуючі угоди)</th>
<th>Екологічний стан агроландшафтів</th>
<th>Оцінка, бал</th>
<th>Екотип території</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>>80</td>
<td>Оптимальний</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20:36</td>
<td>64:80</td>
<td>Задовільний</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>37:55</td>
<td>45:63</td>
<td>Критичний</td>
<td>3</td>
<td>II</td>
</tr>
<tr>
<td>56:70</td>
<td>30:44</td>
<td>Кризовий</td>
<td>4</td>
<td>III</td>
</tr>
<tr>
<td>>70</td>
<td><30</td>
<td>Катастрофічний</td>
<td>5</td>
<td>IV</td>
</tr>
</tbody>
</table>

Оптимальні параметри пропорції P:ЕСУ, коли питома вага природних компонентів агроландшафтлу становить 80–100%, а частка рідлі – менше 20%, властиві так званим «стадоним» ландшафтам, що перебувають у стані екологічної рівноваги. Таким співвідношенням не характеризуються агроландшафти жодного із досліджених районів Тернопільської області! Екологічна незбалансованість аграрних угід внаслідок їх надмірної розораності посилила екологічну напруту в Тернопільському регіоні до критичного рівня.

2. Екологічний стан агроландшафтів Тернопільської області за рівнем антропогенного навантаження та екологічної стабільності

<table>
<thead>
<tr>
<th>Адміністративний район</th>
<th>Коефіцієнт екологічної стабільності</th>
<th>Коефіцієнт антропогенного навантаження</th>
<th>Екологічний стан</th>
<th>Рівень антропогенного навантаження</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бережанський</td>
<td>0,58</td>
<td>2,7</td>
<td>Середньостабільний</td>
<td>Середній</td>
</tr>
<tr>
<td>Борщівський</td>
<td>0,36</td>
<td>3,3</td>
<td>Слабостабільний</td>
<td>Підвищений</td>
</tr>
<tr>
<td>Бучацький</td>
<td>0,36</td>
<td>3,3</td>
<td>Слабостабільний</td>
<td>Підвищений</td>
</tr>
<tr>
<td>Гусятинський</td>
<td>0,34</td>
<td>3,1</td>
<td>Слабостабільний</td>
<td>Підвищений</td>
</tr>
<tr>
<td>Заліщицький</td>
<td>0,36</td>
<td>3,3</td>
<td>Слабостабільний</td>
<td>Підвищений</td>
</tr>
<tr>
<td>Збаражський</td>
<td>0,28</td>
<td>3,6</td>
<td>Екологічно нестабільний</td>
<td>Високий</td>
</tr>
<tr>
<td>Зборівський</td>
<td>0,36</td>
<td>3,3</td>
<td>Слабостабільний</td>
<td>Підвищений</td>
</tr>
<tr>
<td>Козівський</td>
<td>0,27</td>
<td>3,5</td>
<td>Екологічно нестабільний</td>
<td>Високий</td>
</tr>
<tr>
<td>Кременецький</td>
<td>0,40</td>
<td>3,7</td>
<td>Слабостабільний</td>
<td>Підвищений</td>
</tr>
<tr>
<td>Лановецький</td>
<td>0,28</td>
<td>3,6</td>
<td>Екологічно нестабільний</td>
<td>Високий</td>
</tr>
<tr>
<td>Монастирицький</td>
<td>0,50</td>
<td>4,0</td>
<td>Слабостабільний</td>
<td>Підвищений</td>
</tr>
<tr>
<td>Підволочиський</td>
<td>0,25</td>
<td>3,3</td>
<td>Екологічно нестабільний</td>
<td>Високий</td>
</tr>
<tr>
<td>Підгаєцький</td>
<td>0,40</td>
<td>3,7</td>
<td>Слабостабільний</td>
<td>Підвищений</td>
</tr>
<tr>
<td>Теребовлянський</td>
<td>0,28</td>
<td>3,6</td>
<td>Екологічно нестабільний</td>
<td>Високий</td>
</tr>
<tr>
<td>Тернопільський</td>
<td>0,30</td>
<td>3,8</td>
<td>Екологічно нестабільний</td>
<td>Високий</td>
</tr>
<tr>
<td>Чортківський</td>
<td>0,32</td>
<td>4,0</td>
<td>Екологічно нестабільний</td>
<td>Високий</td>
</tr>
<tr>
<td>Шумський</td>
<td>0,48</td>
<td>3,8</td>
<td>Слабостабільний</td>
<td>Підвищений</td>
</tr>
<tr>
<td>Всього по області</td>
<td>0,29</td>
<td>3,7</td>
<td>Екологічно нестабільний</td>
<td>Високий</td>
</tr>
</tbody>
</table>

При науково обґрунтованому поєднанні коефіцієнтів можливо їх використовувати для визначення індексу узагальненого видового різноманіття (MSA). Нами було виявлено, що
найвище значення узагальненого видового різноманіття має Бережанський район (23%), який за величиною коефіцієнта екологічної стабільності є середньостабільною територією, а за співвідношенням питомої ваги утів має критичний стан агроландшафтів. Райони, які належать до слабостабільних територій, мають значення індексу MSA від 15 до 21% та критичний (Монастириський та Шумський райони), кризовий та катастрофічний (Збаразький район) стан агроландшафтів. Екологічно нестійкі території мають менше 15% узагальненого видового різноманіття та кризовий стан агроландшафтів. Методики застосування індексу MSA, оцінка екологічного стану агроландшафтів за співвідношенням питомої ваги утів та рівнем антропогенного навантаження і екологічної стабільності не суперечать одна одній, оскільки дають корелюючі результати, тому можуть використовуватися для визначення екологічного стану територій.

Рис. 2. Картограма індексу MSA досліджених районів Тернопільської області.

Агробіорізноманіття – це різноманітні живі організми (рослин, тварин, мікроорганізмів), які вирощуються на сільськогосподарських угіддях (агроландшафтах) і які сприяють сільськогосподарському виробництву або використовують райони ведення сільського господарства для забезпечення себе кормом і притулком [5].

Проект "Індикатори біорізноманіття для національних потреб" (BINU) визначає, що агробіорізноманіття містить три складові: дике біорізноманіття, генетичне біорізноманіття і асоційоване біорізноманіття. На думку вченого А. Г. Тааріко, шляхом комбінування набору культур в сівозміні можливо регулювати процес створення стійкого агроландшафту з відповідним рівнем агробіорізноманіття, здатного припинити ерозійні процеси, підвищити родючість ґрунту та забезпечити достатню високу продуктивність. Найбільш придатні для цих цілей сівозміни, структурний склад яких характеризується високим ступенем біорізноманіття, яке досягається сумісними посівами польових культур [6]. Поля, відведені під багаторічні трави, рекомендується засівати конюшню-злаковими, люцерно-єзарпцево-злаковими, люцерно-злаковими сумішками. При цьому, чим більшим є набір злакових трав в суміщі, тим стабільніша їх продуктивність [6]. Базовою основою збереження біорізноманіття агроландшафтів є раціональне використання земельного покриву, його охорона й відтворення родючості, а також збереження різноманіття ґрунтів. Кожний вид антропогенного впливу на агроландшафти можливо описати рядом параметрів, що безпосередньо характеризують ступінь прояву антропогенного навантаження. Такими параметрами, наприклад, для землероб-
ства є кількість (якість) доцільно розрахованих, без відповідної шкодочинності, внесених добрив, засобів захисту рослин на одиницю площі за рік, число проходів важких сільськогосподарських агрегатів (техніки) по полю за рік. Індекс узагальненого видового різноманіття (MSA) побудований на розрахунках простих причинно-наслідкових зв’язків між рушеннями силами змін стану довкілля та тісно пов’язаний із станом біорізноманіття. Індекс можливо інтерпретувати як показник ступеня природності, але він не вказує на абсолютну значення видового багатства. Також базовими якісними показниками, які вказують на екологічну збалансованість агроландшафтів, їх стійкість і ступінь перетворення під впливом господарської діяльності, є коефіцієнти антропогенного навантаження та екологічної стійкості.

Висновки
Варто урізноманітнювати сівозміни, частину деградованих і малопродуктивних земель відводити під пасовища, сінохатті, луки, ліси; збільшувати частку природо-охоронних територій в області і тим самим досягти стійкості агробіорізноманіття та його рівня стабільності у рекреаційному полі зору. До того ж, забезпечити впровадження новітніх екологічно збалансованих технологій у сільському господарстві та підтримання розвитку біологічного землеробства, розроблення порядку і запровадження економічного стимулювання землевласників, землекористувачів щодо ведення екологічно збалансованої сільськогосподарської діяльності, що дасть можливість поліпшити стан агробіорізноманіття і збільшити його продуктивну кількість.

Бібліографічний список