УДК 633.15:631.531.02

ОСОБЛИВОСТІ ФОРМУВАННЯ СХОЖОСТІ НАСІННЯ КУКУРУДЗИ

М. О. Стюрко*
Інститут сільського господарства степової зони НААН України

Наведені результати досліджень якості насіння гібридів кукурудзи та їхніх батьківських форм. Встановлено особливості формування схожості та сили росту насіння, врожайність зерна. За результатами досліджень рекомендуємо визначати схожість насіння методом холодного пророщування. Цей метод запропоновано використовувати у системі внутрішньогосподарського контролю за якістю насіння, крім цього, його варто стандартизувати.

Ключові слова: схожість насіння, якість насіння, метод холодного пророщування, зерно.

Схожість є важливим показником якості насіння, оскільки характеризує його посівну придатність. Зі схожістю насіння великою мірою пов’язані ріст і розвиток рослин, їх продуктивність. На прикладі багатьох культур встановлено, що за рахунок підвищення польової схожості на 1% врожайність можливо збільшити на 1–2% [1]. Крім цього, з’ясовано, що прибувка врожаю пов’язана зі схожістю і забезпечується не тільки за рахунок оптимальної густоти стояння рослин, але й завдяки поліпшенню фізіологічного і біологічного стану насіння, особливо на початкових стадіях проростання. У зв’язку з цим встановлення особливостей формування схожості насіння має важливе науково-практиче значення для підготовки та отримання високоякісного посівного матеріалу.

Методи оцінки схожості насіння можна розподілити на чинні та додаткові. Чинні – це визначення схожості насіння сільськогосподарських культур за ДСТУ 4138-2002, згідно з яким схожість розглядається як здатність насіння до максимального проростання в оптимальних умовах. Звісно, і основний недолік методу: він полягає в тому, що за оптимальних умов може проростати різнє насіння, у тому числі й ушкоджене або неповноцінне, тобто те, яке не в змозі проростати в більш жорстких польових умовах.

Додаткові методи дають можливість точніше оцінювати якість насіння: найчастіше виявляють шляхом холодного пророщування та визначення сило росту. Особливо важливе значення відіграють додаткові методи для оцінки якості насіння тих культур, що залежно від погодно-класичних умов мають тривалий період між сівбою і появою сходів. В першу чергу це стосується кукурудзи, оскільки в неї залежно від температури і вологості грунту, тривалість цього періоду коливається від 9 до 30 днів.

В зв’язку з цим метою нашої роботи було дослідити особливості проростання насіння гібридів і самозапиленних ліній кукурудзи, спираючись на чинні та додаткові методи, встановити кореляційну залежність між лабораторною і польовою схожістю, визначити співвідношення між схожістю і врожайністю різноякісного насіння.

* Дані наведені у статті є результатом продовження досліджень, розпочатих науковим керівником дисертаційної роботи доктором с.-г. наук М. Я. Кирпою.

У дослідах показники проростання насіння різнились залежно від методів пророщування (табл. 1). Схожість була найвищою при пророщуванні насіння за чинним стандартизованим методом (ДСТУ), а найнижче – при холодному пророщуванні. При цьому схожість насіння самозапилених ліній знижувалась більшою мірою порівняно з гібридинним. Крім того, показники сили росту насіння були при стандартному методі пророщування.

1. Проростання насіння гібридів і самозапиленних ліній кукурудзи залежно від методу пророщування (2009–2011 рр.)

<table>
<thead>
<tr>
<th>Гібрид, лінія</th>
<th>Метод пророщування</th>
<th>Показники проростання</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>енергія росту,</td>
<td>схожість,</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Розівський 181 СВ, Кремінь 200 СВ, Кадр 267 МВ, Дніпровський 310 МВ, Любава 279 МВ, Розівський 311 СВ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Розівський 181 СВ, Кремінь 200 СВ</td>
<td>1 *</td>
<td>93,0</td>
</tr>
<tr>
<td>Розівський 181 СВ, Кремінь 200 СВ</td>
<td>2 **</td>
<td>-</td>
</tr>
<tr>
<td>Розівський 181 СВ, Кремінь 200 СВ</td>
<td>3 ***</td>
<td>78,7</td>
</tr>
<tr>
<td>П 502 М, ДК 366 МВ, П 346, ДК 437 М</td>
<td>1</td>
<td>86,5</td>
</tr>
<tr>
<td>П 502 М, ДК 366 МВ, П 346, ДК 437 М</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>П 502 М, ДК 366 МВ, П 346, ДК 437 М</td>
<td>3</td>
<td>67,5</td>
</tr>
</tbody>
</table>

* Стандартний за ДСТУ. **Сила росту. ***Холодне пророщування.

У дослідах різноякісність вивчалась, виходячи з показників проростання насіння за різними методами пророщування та польовою схожістю (табл. 2). Для цього за ДСТУ 2240-93 були сформовані різні категорії насіння з лабораторною схожістю: 87–91, 92–95, 96–100%. По кожній категорії визначали силу росту, схожість при холодному пророщуванні і польову, а також врожайність зерна.

Якість насіння залежно від категорії різнялася за схожістю, зокрема і кондиційного. Так, між категоріями кондиційного гібридного насіння (схожість 92–100%) різниця за силою росту становила 3–5%, при холодному пророщуванні – 5–15%, за польовою схожістю – 4–9%, самозапиленої лінії – 5,0; 7–10 і 7–9% відповідно. Категорії зі схожістю 87–91% поступалась насінню категорії 92–95% таким чином: по гібридах – на 2–6%, 7–15 і 10–14%; по лінії – на 7,0; 5–10 і 7–8% відповідно.

Різня якість насіння, віднесенного до окремих категорій, впливало і на врожайність властивості. Так, при висіві насіння зі схожістю 87–91% врожайність зерна гібридів знижувалась на 0,24–1,45 т/га, самозапиленої лінії – на 0,26–0,66 т/га порівняно з варіантами, де схожість його становила 92–95 і 96–100%. Навіть при порівнянні різних категорій кондиційного насіння були виявлені розбіжності. При сівбі насінням зі схожістю 96–100% врожайність гібридів підвищувалась на 0,57–1,01 т/га, лінії – на 0,22–0,30 т/га порівняно з насінням зі схожістю 92–95%.

У цілому за рахунок більш якісного насіння врожай зерна гібридів кукурудзи підвищувався на 14,7–20,6%, а самозапиленої лінії – на 20,7–24,4%.

Бюлетень Інституту сільського господарства степової зони НААН України. – 2012. – №3

118
2. Різновікісність насіння кукурудзи залежно від категорії схожості

<table>
<thead>
<tr>
<th>Гібрид, лінія</th>
<th>Категорія схожості, %</th>
<th>Оцінки якості, схожість, %</th>
<th>Врожайність зерна, т/га</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>сила росту</td>
<td>холодність пророщування</td>
<td>польова</td>
</tr>
<tr>
<td>Кадр 267 МВ</td>
<td>87-91</td>
<td>82-91</td>
<td>61-75</td>
</tr>
<tr>
<td></td>
<td>92-95</td>
<td>88-94</td>
<td>68-90</td>
</tr>
<tr>
<td></td>
<td>96-100</td>
<td>93-98</td>
<td>82-95</td>
</tr>
<tr>
<td>Розівський 311 СВ</td>
<td>87-91</td>
<td>85-90</td>
<td>58-70</td>
</tr>
<tr>
<td></td>
<td>92-95</td>
<td>87-94</td>
<td>65-82</td>
</tr>
<tr>
<td></td>
<td>96-100</td>
<td>90-99</td>
<td>80-90</td>
</tr>
<tr>
<td>Π 502 М</td>
<td>87-91</td>
<td>78-86</td>
<td>50-70</td>
</tr>
<tr>
<td></td>
<td>92-95</td>
<td>85-93</td>
<td>60-75</td>
</tr>
<tr>
<td></td>
<td>96-100</td>
<td>90-95</td>
<td>70-82</td>
</tr>
</tbody>
</table>

Отримані дані свідчать про відносну точність такого методу лабораторного пророщування насіння, як чинний стандартизований за ДСТУ. Він дає можливість провести порівняльну оцінку схожості окремих партій, але не встановлює абсолютної індивідуальної якості насіння або його посівної придатності.

Як показали дослідження, до більш точних методів визначення схожості насіння кукурудзи варто віднести холодне пророщування з перемінним температурним режимом та використанням ґрунту як субстрату. В більшості випадків схожість визначена таким методом наближалась до польової, особливо, якщо насіння було різновікісним, ушкодженим або тривалий час зберігалося.

У зв’язку з цим необхідним було визначення рівня кореляції між польовою схожістю та схожістю його при пророщуванні різними методами. Виявлено, що найбільша залежність існувала при холодному пророщуванні і була на рівні 0,72–0,80 для гібридів і самозапиленних ліній (табл. 3). Найменша кореляція зафіксована у випадку пророщування насіння за чинним методом (ДСТУ) – в межах 0,55–0,57. Встановлено також, що самозапилені лінії мають децю нижчий рівень кореляції порівняно з гібридами, оскільки в польових умовах насіння ліній менш стійке, а схожість зазнає значних змін залежно від його якості.

3. Кореляційна залежність між лабораторною і польовою схожістю насіння кукурудзи

<table>
<thead>
<tr>
<th>Гібрид, лінія</th>
<th>Метод визначення схожості</th>
<th>Рівень кореляції</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κадр 267 МВ, Дніпроп. 310 МВ,</td>
<td>1 *</td>
<td>0,47</td>
</tr>
<tr>
<td>Дніпроп. 284 МВ,</td>
<td>2 **</td>
<td>0,68</td>
</tr>
<tr>
<td>Дніпроп. 337 МВ, Кадр 443 СВ</td>
<td>3 ***</td>
<td>0,81</td>
</tr>
<tr>
<td>Π 502 М, ДК 366 МВ, Π 346,</td>
<td>1</td>
<td>0,45</td>
</tr>
<tr>
<td>ДК 437 М, ДС 103 МВ</td>
<td>2</td>
<td>0,60</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,72</td>
</tr>
</tbody>
</table>

* Метод ДСТУ. ** Сила росту. *** Холодне пророщування.

Висновки

Виявлено значну різновікісність насіння гібридів і самозапиленних ліній кукурудзи за схожістю, встановлено окремі категорії насіння, які характеризуються різною схожістю, силою росту і врожайністю. Для отримання насіння високої якості рекомендовано спиратися на метод холодного пророщування – рівень кореляції становить 0,72–0,81 відповідно до польової схожості. Цей метод можливо застосовувати в галузі державного та внутрішнього господарського контролю за якістю посівного матеріалу.

Бібліографічний список